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Direct Derivation of the Schwinger Quantum
Correction to the Thomas ± Fermi Atom
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The Schwinger quantum correction to the classic Thomas ±Fermi atom is directly
derived by solving for the latter without recourse to a modeling after the harmonic
oscillator potential and without solving for the particle density.

In an ingenious treatment of the quantum correction to the remarkable

Thomas±Fermi atom (Thomas, 1927; Fermi, 1927, 1928), Schwinger (1981)

modeled his analysis after the harmonic oscillator potential. Although this

modeling argument turns out to be correct, the importance of this ª atom,º

which has captivated physicists since its birth over 70 years ago when quantum

mechanics was still in its infancy, and will continue to do so due to its
extreme simplicity and remarkable success, has motivated us to supply a

direct derivation of the Schwinger correction without recourse to a harmonic

oscillator potential modeling and without solving for the particle density

(Dreizler and Gross, 1990). The latter reference also gives a fairly recent

review of the state of the art of the theory and gives extensive references to
the monumental work of Schwinger and to many other contributors. For more

recent work and additional references see Morgan (1996).

The quantum correction to the ground-state energy is given by the

compact expression

d EQua 5 # d3 -
r

2

2 p i #
`

2 `

d t
t 2 i e

i
-
- t

[ d G0 (
-
r t ,

-
r0; VTF)

2 d G0(
-
r t ,

-
r0; Vc)] (1)

1 School of Physics, Suranaree University of Technology, Muang District, Nakhon Ratchasima
30000, Thailand.

897

0020-7748/99/0300-089 7$16.00/0 q 1999 Plenum Publishing Corporation



898 Manoukian and Bantitadawit

where the t -integral projects out the negative spectrum; G0(
-
r t ,

-
r 80; V )

is defined in terms of the Green function: G 6 (
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-
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r80) 5 0 for t . 0 and t , 0, respectively. Here t 5 t/ " . G 6 satisfies

the differential equation
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The potentials have the following familiar expressions:

VTF(
-
r ) 5 2 (Ze2/r)f (x) (3)

VC(
-
r) 5 2 (Ze2/r) [1 1 f 8(0)(r/a)] (4)

where a 5 (3 p /4)2/3( " /2me2)Z 2 1/3, x 5 r/a, and f (x) is the Thomas±Fermi

function: f (0) 5 1, and vanishes like x 2 3 for x ® ` . In Eq. (1) the Coulombic

contribution (4), describing the so-called tightly bound electrons near the
nucleus, is appropriately subtracted out. d G0 denotes the shift from the semi-

classical limit.
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we have that U satisfies the differential equation (U | t 5 0 5 0):
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The semiclassical limit is given by U0 5 V(
-
r ) t . It is easily checked from (6)

that the leading shift d U in U from the semiclassical limit is given by
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Upon replacing U 5 U0 1 d U in (5) and carrying out an elementary Gaussian

integral, we obtain for d G0
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Upon integrating over t in (1) by parts, we obtain for
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the remarkably simple expression
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involving only one (!) derivative with respect to V. The latter expression is

readily integrated to yield, after straightforward rearrangements of terms,

1

24 p 2 " F (
-

¹ 2V )( 2 2mV )1/2 2
1

3m

-
¹ ? (

-
¹ ( 2 2mV )3/2) G (10)

The second expression in (10) gives a zero surface contribution to (1) at

infinity and near the origin due to the properties of

[( 2 2mVTF(
-
r ))3/2 2 ( 2 2mVC(

-
r ))3/2] for r ® ` and r ® 0.

Finally we use the following important relations for the potentials:
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and the first expression in (10) to immediately obtain for d EQua in (1)
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accounting for the 2 0.04907Z5/3 (in units of me4/ " 2) contribution to the

ground-state energy.
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